Review—Metal Oxide Chemoresistive Gas Sensing Mechanism, Parameters, and Applications

Author:

Pathania Abhilash,Dhanda Neetu,Verma Ritesh,Sun An-Cheng Aidan,Thakur Preeti,Thakur AtulORCID

Abstract

The economic growth of any country depends upon the MSMEs as it plays a vital role in GDP and employment. The transportation is considered as the lifeline of the country. Hence due to developing countries, the industries and vehicles are continuously increasing to fulfil industrial or domestic requirements. But unfortunately, industries and vehicles emit harmful gases as exhaust to the environment. Which directly or indirectly impact the human health. Fresh and clean air is the prime need of the society. Hence the monitoring of different gas concentrations in the environment is very essential to take preventive steps to control air pollution. The traditional method of monitoring the air quality is very expensive, hence most of the countries have limited air monitoring stations. In the field of nanotechnology, scientists have developed different types of soft metal oxide materials that are capable of sensing different gases at low concentrations and can work in different environmental conditions. For the last 10 years, ferrite-based sensors have the primarily used to detect harmful gases, and pollutants from vehicle exhaust, and environmental pollution monitoring. These soft ferrites have excellent electrical and magnetic properties that can also be tuned according to the requirement of the sensor to increase sensitivity and selectivity. The tuning of ferrite sensors depends upon synthesis technique, optimizing preparation conditions, sintering temperatures, operating temperatures, dopant concentration, etc This paper is based on a deep study of the synthesis techniques of nano-ferrites, different types of gas sensors, gas sensing mechanisms, parameters, and application of chemo-resistive metal oxide gas sensors. The key parameters for the ferrite gas sensors are phase formation, crystallite size, grain size, surface area, selectivity, dopants, sensitivity, gas concentration, operating temperature, and response/recovery time. This review paper also includes the study of different researchers to find the impact of high concentrations of gases like hydrogen (H2), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), ethylene glycol ( CH 2 OH ) 2 , methane (CH4), ammonia (NH3) liquid petroleum gas (LPG), acetylene (C2H2), and nitrogen oxides (NOx) in the environment and the metal oxide materials selected for the sensor application.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3