Simultaneous Detection of CO and NO2 Gases using Interaction Analysis of SnS2 Sensor Array Response

Author:

Kanaparthi Srinivasulu,Singh Shiv GovindORCID

Abstract

Developing a multi-analyte gas sensing system that simultaneously detects trace levels of CO and NO2 at low temperatures is necessary for the Internet of Things (IoT) based air quality monitoring applications. Nevertheless, gas sensors operating at low temperatures are nonspecific and rarely detect target gases at lower ppb levels in the air. Herein, an array of two SnS2 sensors with different bias voltages has been developed and characterized upon exposure to individual and binary mixtures of CO and NO2 gases at different concentrations. The developed gas sensors array achieved the lower detection limit of 45 ppb for NO2 and 150 ppb for CO. Further, co-adsorption-induced interaction analysis was carried out to predict the target gas concentration in the binary mixture using the mixed gas response. The mean absolute percentage error of 7.86% is observed in predicting the target gas concentrations in the binary mixture, which indicates the high prediction accuracy of proposed method. As a minimal resource intensive approach, the proposed method can be used in air quality monitoring applications that require low-power and low-cost sensors.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

The Electrochemical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3