Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a phenazine-producing pathogen recognized for its biofilm-mediated antibiotic resistance, showing up to 1000 times higher resistance compared to planktonic cells. In particular, it is shown that a phenazine called pyocyanin promotes antibiotic tolerance in P. aeruginosa cultures by upregulating efflux pumps and inducing biofilm formation. Therefore, real-time study of phenazine production in response to antibiotics could offer new insights for early detection and management of the infection. Toward this goal, this work demonstrates real-time monitoring of P. aeruginosa colony biofilms challenged by antibiotics using electrochemical sensors based on direct laser functionalization of laser induced graphene (LIG) with gold (Au) nanostructures. Specifically, two routes for functionalization of the LIG electrodes with Au-containing solutions are studied: electroless deposition and direct laser functionalization (E-Au/LIG and L-Au/LIG, respectively). While both methods show comparable sensitivity (1.276 vs 1.205 μA μM−1), E-Au/LIG has bactericidal effects which make it unsuitable as a sensor material. The effect of antibiotics (gentamicin as a model drug) on the production rate of phenazines before (i.e., in planktonic phase) or after biofilm formation is studied. The sensor data confirms that the P. aeruginosa biofilms are at least 100 times more tolerant to the antibiotic compared to planktonic cells. The biosensors are developed using a scalable and facile manufacturing approach and may pave the way toward simple-to-use antibiotic susceptibility testing devices for early infection diagnosis and real-time study of antibiotic resistance evolution.
Funder
National Science Foundation
National Institutes of Health
Publisher
The Electrochemical Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献