Abstract
Diabetes leads to chronic microvascular complications for the heart, kidney, and eyes due to uncontrolled glycemic fluctuations. Self-monitoring blood glucose meters can only provide a snapshot of glucose level and are incapable of capturing the granular glucose fluctuations over the 24 h in day. The clinical research has indicated that random blood glucose fluctuations can lead to organ damage. In pursuit of better glucose management, Continuous Glucose Monitoring (CGM) is emerging as a popular alternative owing to its ability to detect instantaneous changes in glucose levels and to alert the users of impending hypo- or hyper-glycemic events. In the last decade, several CGM devices have been launched in the market based on different glucose sensing chemistries and techniques. More research is still needed to come up with novel bio sensing concepts to make CGM low cost and highly accurate. Here, we elaborate the CGM techniques such as electrochemical, optical, reverse iontophoresis, microdialysis, and impedance spectroscopy. We emphasize on the widely used electrochemical CGMs with a focus on sensor design and bio-compatibility. We also provide an outlook for the future technologies, highlighting the need for innovative materials, possibility of integrating with the Internet of Things (IoT) for real-time e-health monitoring.
Publisher
The Electrochemical Society
Reference154 articles.
1. Perspective—an Age of sensors;Turner;ECS Sens. Plus,2022
2. Review—towards 5th generation AI and IoT driven sustainable intelligent sensors based on 2D MXenes and borophene;Chaudhary;ECS Sens. Plus,2022
3. Blood Glucose Monitoring Devices Market Size, Share & Trends Analysis Report By Product (Self-Monitoring Devices, Continuous Blood Glucose Monitoring Devices), By End-use, By Region, And Segment Forecasts, 2022–2030,2022
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献