Review—Electrochemistry and Other Emerging Technologies for Continuous Glucose Monitoring Devices

Author:

Kumar Das SarojORCID,Nayak Kavya K.,Krishnaswamy P. R.,Kumar Vinay,Bhat NavakantaORCID

Abstract

Diabetes leads to chronic microvascular complications for the heart, kidney, and eyes due to uncontrolled glycemic fluctuations. Self-monitoring blood glucose meters can only provide a snapshot of glucose level and are incapable of capturing the granular glucose fluctuations over the 24 h in day. The clinical research has indicated that random blood glucose fluctuations can lead to organ damage. In pursuit of better glucose management, Continuous Glucose Monitoring (CGM) is emerging as a popular alternative owing to its ability to detect instantaneous changes in glucose levels and to alert the users of impending hypo- or hyper-glycemic events. In the last decade, several CGM devices have been launched in the market based on different glucose sensing chemistries and techniques. More research is still needed to come up with novel bio sensing concepts to make CGM low cost and highly accurate. Here, we elaborate the CGM techniques such as electrochemical, optical, reverse iontophoresis, microdialysis, and impedance spectroscopy. We emphasize on the widely used electrochemical CGMs with a focus on sensor design and bio-compatibility. We also provide an outlook for the future technologies, highlighting the need for innovative materials, possibility of integrating with the Internet of Things (IoT) for real-time e-health monitoring.

Publisher

The Electrochemical Society

Reference154 articles.

1. Perspective—an Age of sensors;Turner;ECS Sens. Plus,2022

2. Review—towards 5th generation AI and IoT driven sustainable intelligent sensors based on 2D MXenes and borophene;Chaudhary;ECS Sens. Plus,2022

3. Blood Glucose Monitoring Devices Market Size, Share & Trends Analysis Report By Product (Self-Monitoring Devices, Continuous Blood Glucose Monitoring Devices), By End-use, By Region, And Segment Forecasts, 2022–2030,2022

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3