Abstract
A simple and selective enzyme-free electrochemical sensor for H2O2 has been designed and fabricated using ionic liquid (IL) tagged anthraquinone (AQ) modified electrode (AQ-PF6-IL). This newly synthesized AQ-PF6-IL has been systematically characterized, after which it has been immobilized over a screen-printed electrode to produce AQ-PF6-IL/SPE. The electrochemical investigation of AQ-PF6-IL/SPE displayed a set of distinct redox peaks attributable to the anthraquinone/anthrahydroquinone redox pair. Interestingly, AQ-PF6-IL/SPE has shown enhanced peak current at reduced formal potential for AQ, when compared to AQ/SPE. Further, the electrocatalytic activity of AQ-PF6-IL/SPE towards the reduction of H2O2 was investigated with the sequential addition of H2O2. A rapid and appreciable enhancement in cathodic peak currents was observed and thus demonstrating the excellent electrochemical reduction of H2O2 at the newly developed sensor. Besides, AQ-PF6-IL/SPE established a good linear behaviour over a concentration range of 10–1228 μM with a high sensitivity of 0.281 μA μM−1 cm−2 and low detection limit of 2.87 μM. The fabricated sensor displayed excellent stability, good anti-interference ability, along with acceptable reproducibility. The superior properties of the developed sensor could be attributed to the newly designed AQ-PF6-IL, wherein the redox characteristics of AQ mediator are integrated with the high stability and conductivity of IL.
Funder
Indian Council of Medical Research
Publisher
The Electrochemical Society
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献