(Invited) Strain Engineered Crack-Free GaN on Si for Integrated Vertical High Power GaN Devices with Si CMOS

Author:

Dayeh Shadi,Tanaka Atsunori,Choi Woojin,Chen Renjie

Abstract

The ability to grow thin GaN layers on Si substrates has led to the development of lateral high power and high-speed devices such as GaN HEMTs. These devices have already demonstrated promising performance and have been adopted for mass market. But lateral devices require large drain/gate separation to sustain high voltage impairing cost effectiveness. This highlights the need for growth of thick GaN layers to enable vertical high power device architectures and to achieve high performance and attain high breakdown voltages in small chip area. This paper presents a successful growth of over 10μm thick crack-free GaN on Si by engineering the strain induced by thermal mismatch between GaN and Si. We discuss the origin of cracking and introduce a surface strain-relief mechanism in 0.5mm diameter GaN dots to overcome thermal mismatches. The first demonstration of vertical thick GaN Schottky diodes on Si will be presented. To fully exploit these results of GaN power devices on Si, side-by-side integration of GaN and CMOS circuitry elements is necessary. We have assessed and validated the compatibility of the GaN-CMOS process. These advances can pave the way for commercialization of next generation compact and efficient power systems that are composed of monolithically integrated GaN and Si technologies.

Publisher

The Electrochemical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3