(Luminescence and Display Materials Division Centennial Outstanding Achievement Award) Band Gap Luminescence from Nanometer Thick Si/SiO2 Quantum Wells

Author:

Lockwood D. J.

Abstract

In opto-electronics and photonics, the severe disadvantage of an indirect band gap has limited the application of elemental silicon. Amongst a number of diverse approaches to engineering efficient light emission in silicon nanostructures, one system that has received considerable attention has been Si/SiO2 quantum wells. Engineering such structures has not been easy, because to observe the desired quantum confinement effects, the quantum well thickness has to be less than 5 nm. Nevertheless, such ultra thin structures have now been produced by a variety of techniques. The SiO2 layers are amorphous, but the silicon layers can range from amorphous through nanocrystalline to single-crystal form. The fundamental band gap of the quantum wells has been measured primarily by optical techniques and strong confinement effects have been observed. A number of theories based primarily on ab initio approaches have been developed to explain these results with varying degrees of success. A detailed comparison is made between theoretical and experimental determinations of the band gap in Si/SiO2 quantum wells.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3