Feasibility Study on Amalgamation of Multiple Measures to Detect Driver Drowsiness

Author:

Bajaj Jaspreet SinghORCID,Kumar NaveenORCID,Kaushal Rajesh Kumar

Abstract

Driver drowsiness is one of the major causes of road accidents which leads to fatal and non-fatal injuries, sudden deaths, and substantial monetary losses. Due to advancements in technologies like Artificial Intelligence (AI), various approaches have been carried out to detect driver drowsiness at the early stage. The existing measures comprises certain issues like intrusiveness, variation in results, and tested in simulated environment only. A hybrid solution is the need for early detection of drowsiness of driver by amalgamation of multiple effective measures. Many researchers have concluded that developing a driver drowsiness detection system by using hybrid measures would be more efficient and highly recommended. The main contribution of this paper is to evaluate and identify the effective measures to detect driver drowsiness and choose the best measures to combine. It will help in early detection of the driver drowsiness in a more efficient manner and avoid crashes on the roads.

Publisher

The Electrochemical Society

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3