(Invited) Self-Heating Issue of Poly-Si TFT on Glass Substrate

Author:

Asano Tanemasa,Nakagawa Gou

Abstract

One of critical issues of TFT for large scale integration is temperature rise of TFT due to self-heating. In this paper, we report temperature rise of poly-Si TFT during operation. The temperature was evaluated by determining the thermal resistance from the temperature-dependent negative-drain conductance. TFTs are fabricated using a laterally-grown poly-Si film. By aligning TFT channel direction with the grain growth direction, effects of grain boundary on carrier transport becomes less significant so that direct evaluation of self-heating from drain characteristic becomes possible. SOI MOSFET is also investigated. Results indicate that the thermal resistance of TFT is 40 times as large as that of SOI MOSFET. As a consequence, temperature rise of TFT reaches to 150 K even under normal operation condition. Heat dissipation path is also investigated by determining the thermal resistance of TFTs having various dimensions. Effect of stripe channel on TFT performance and temperature rise is also discussed. Results clearly indicate that design of thermal path through the gate becomes of importance for TFTs.

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3