Fabrication and Characterization of Functionally Graded Nanocomposites: Impact of Graphene and Vanadium Carbide on Aluminum Matrix

Author:

Moustafa Essam B.ORCID,Said Mohamed,Aljabri Abdulrahman,Taha Mohammed A.ORCID,Youness Rasha A.ORCID,Hussein Hossameldin

Abstract

Functional graded nanocomposites (FGNCs) based on Al are artificially tailored heterogeneous materials intended to serve the demand for diverse and contradicting properties used in various industrial applications. FGNCs and hybrid FGNCs (HFGNCs) based on Al reinforced with graphene and vanadium carbide (VC) were prepared using powder metallurgy techniques and investigated. Both samples were designed with a gradient composition, where the bottom layer consisted of 100% pure Al, followed by three consecutive layers containing progressively increasing amounts of reinforcement. The incorporation of graphene and VC into layer powders resulted in a decrease in both particle and crystal dimensions compared to pure Al. Adding graphene has a negative effect on bulk density samples, while VC has a positive effect. Reinforcing materials led to a decrease in thermal conductivity that reached 26.7% for samples reinforced with VC reinforcement, except for FGNCs reinforced with graphene, which increased by ∼3.3 compared to Al. The samples’ CTE and electrical conductivity values decreased, although adding graphene alone led to a slight decrease in electrical conductivity. A significant improvement in all mechanical properties was noted with additional. The HFGCNs reinforced with the largest amount of hybrid reinforcement recorded an improvement in CTE value, Young’s modulus, and compressive strength by about 38.1%, 22.2%, and 20.5%, respectively, compared to Al.

Funder

Center of Excellence for Advanced Materials Research, King Abdulaziz University

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3