Modulating the Electrocatalytic CO2-CO Performance by Ag Morphology

Author:

Qiu Xudong,Li Xiaoguang

Abstract

Highly selective conversion of CO2 into CO molecules remains a major challenge in electrocatalytic CO2 reduction reactions, and metallic silver-based materials have great potential. However, the selectivity and activity of traditional silver (Ag)-based materials cannot reach the desired level, and the development of new Ag-based materials has become a hot research topic. Here, novel ag-glomerated spore-shaped Ag nanomaterials are reported for the efficient reduction of CO2 to CO. The unique nanostructures endowed with larger specific surface area, and the spore-like dispersed Ag nanoparticles (NPs) have more unsaturated Ag sites, which endowed the catalysts with higher intrinsic activity. Electrochemical tests show that spore-like Ag can obtain a Faraday efficiency (FE) of 95.6% at −1 V vs RHE, which is much higher than that of Ag nanowires (NWs) (73%) and ordinary Ag NPs (83%) synthesized in the same period. By using the three different morphologies of Ag synthesized as a research platform and statistically comparing the FE in the corresponding voltage interval, we obtained the influence of morphology effect on the selectivity of CO product production by electrocatalytic CO2 production over Ag-based catalysts, which can be further used as a guideline for catalyst development.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3