Experimental Determination of Si Self-Interstitial Emission During Oxide Precipitation in Czochralski Silicon

Author:

Kissinger G.ORCID,Kot D.,Sattler A.

Abstract

We used the method of Torigoe and Ono [J. Appl. Phys., 121, 215103 (2017)] to investigate the kinetics of β, the number of self-interstitials emitted per precipitated oxygen atom, during oxide precipitation in Czochralski silicon. For this purpose, we used pp- epitaxial wafers with a buried highly B-doped epitaxial layer which were annealed with and without thermal pre-treatments at 950 °C. From the results we conclude that in the initial phase of oxide precipitation without thermal pre-treatment β is very high before it drops to low values. With a thermal pre-treatment at 800 °C for 2 h, the initial value of β is somewhat lower before the drop also occurs. If a nucleation anneal is carried out before the thermal treatment at 950 °C the β values are low from the beginning. All of these results confirm our previously published theoretical predictions experimentally. This work also shows that the crystal pulling process can affect the initial β value because grown-in oxide precipitate nuclei can reduce their strain by vacancy absorption. Therefore, high vacancy supersaturation during crystal cooling while oxide precipitate nucleate would lead to somewhat lower initial β values.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3