High Absorption Electromagnetic Wave Properties of Composite CoFeO3 Synthesized by Simple Mechanical Alloying

Author:

Heryanto Heryanto,Tahir DahlangORCID

Abstract

Electronic equipment demand is strongly correlated to the electromagnetic wave interference (EMI), which causes severe effects on human health. Microwave absorbing materials (MAMs) are one method to protect human health from EMI. Cobalt nanoparticles show high performance as MAMs. Here, we have synthesized CoFeO3 by simple mechanical alloying for increased multiple reflections, interfacial polarization, magnetic domain loss, electron spin loss, internal resonance, hoping electron, conductive loss, and multiple scattering for improved absorption of EMI waves. We determined the electronic properties from the Quantum Espresso (QE) and corresponding results are discussed. The metallic character comes from the d-state of transition metal atoms Fe (II) and Co which are sufficiently large in magnitude in the Fermi level of band structure and density of state (DOS) distribution. Crystallite size in the range of 13.6 to 18.7 nm with surface morphology shows irregular shapes of the particles. For CoFeO3 as MAMs, we found that the reflection loss (RL) is −55 dB (lower than the previous reported −43.2 dB) at 10–11 GHz for a thickness of 8 mm, indicating that this study shows high potential of CoFeO3 as an alternative composite for MAMs applications.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3