Abstract
The LiMn
x
Fe1−x
PO4/C (x = 0.5, 0.6, and 0.7) cathode materials for lithium-ion batteries were synthesized by polyethylene glycol (PEG) 400 as the carbon source via a combination of wet ball-milling and high-temperature solid-state reaction. The analysis results of X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) indicate that the as-prepared LiMn0.6Fe0.4PO4/C sample has a single-phase orthorhombic olivine structure, and the majority of particle sizes range from 100 to 200 nm with a ∼2–3 nm carbon coating layer. The electrochemical measurements demonstrate that the obtained LiMn0.6Fe0.4PO4/C composite possesses preferable Li-ion storage properties, and the discharge capacity of 137.7 mAh g−1 at 1 C rate, which is 83.6% of that at 0.1 C rate. The composite also exhibits outstanding cycling stability, with a capacity retention of 98.2% after 100 cycles at 0.2 C rate. And the differential capacity analysis (dQ/dV) reveals that the dominating degradation of LiMn0.6Fe0.4PO4/C is caused by the Mn2+ /Mn3+ redox capacity loss which is located at ∼4.12/3.96 V, whether during the charge or discharge process. Moreover, the LiMn0.6Fe0.4PO4/C sample delivers excellent high-temperature performance (45 °C), with improved reversible capacity and capacity retention of 148.7 mAh g−1 and 99.3% after 80 cycles at 0.5 C rate, respectively.
Funder
Postgraduate Research & Practice Innovation Program of Yancheng Institute of Technology
National Natural Science Foundation of China
Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献