Abstract
Hydrogen evolution by water splitting is one of the easy and clean methods for generating energy that can solve the energy crisis in the near future. In this report, WO3 nanoplates were treated with a chemical bath deposition (CBD) and hydrothermal (HM) sequentially to synthesize the ZnO@CdS core-shell nanorods (NRs) on the nanoplates. Prior to this, the sputtering process followed by HM has been involved to grow basic uniform WO3 NPts onto the FTO substrate. To ensure the enhancement in the performance of the photoanode under solar light, the sputtered-grown Pt nanoparticles were used as the catalyst. The method measurements FESEM, HR-TEM, XRD, LSV, and conversion efficiency were used for the examination of the morphology and performance of the photoanodes. In an aqueous solution of 0.3 M Na2S and 0.2 M Na2SO3 (pH ∼13.5), the linear sweep voltammetry (LSV) analysis shows a photocurrent density of 17.1 mA cm−2 at 0 V vs SCE and 6.1% of the efficiency of conversion energy at −0.5 V vs SCE of Pt/CdS@ZnO/WO3/FTO photoanode.
Funder
Vietnam Academy of Science and Technology
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献