Performance Analysis of Voltage-Controlled Magnetic Anisotropy MRAM-Based Logic Gates and Full Adder

Author:

Jangra PayalORCID,Duhan Manoj

Abstract

In the last decade, spintronics technology has been extensively researched for future non-volatile memories use. VCMA-MRAM exploits the voltage-controlled magnetic anisotropy (VCMA) principle to write data into magnetic tunnel junctions. In this paper, analysis, and comparison of the Energy consumption and delay performance parameter of Voltage Controlled Magnetic Anisotropy (VCMA) based logic gates are being done. This paper has implemented AND/NAND, OR/NOR, XOR/XNOR, and Full Adder using CMOS/VCMA models. Three models of VCMA have been used in this paper for performance analysis and comparison—STT-assisted thermally activated VCMA, STT-assisted precessional VCMA, and Precessional VCMA. The performance of these circuits has been analyzed, and the results have been compared within VCMA modules. Performance parameters like energy consumption and delay has been analyzed in this paper. From the gate latency (delay) and energy consumption analysis, it has been derived that the precessional VCMA-based gates perform better in these domains as compared to the other VCMA model-based gates. It is observed that performance improvements of ∼20% and ∼60% have been seen over STT-assisted precessional VCMA and STT-assisted thermally activated VCMA based gates in terms of gate latency at 1.2 V operating voltage and improvement of around 80% is seen in terms of energy over STT assisted thermally activated magnetic anisotropic MRAM, respectively.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3