The Spectroscopic and Antimicrobial Yield of Sol-Gel Derived Zinc Copper Silicate/E102 Nanoclusters

Author:

Mansour A. M.ORCID,Hemdan Bahaa A.,Abou Hammad Ali B.ORCID,Saleh Hisham A.,El Nahrawy Amany M.ORCID

Abstract

The structural and optical properties of 30 ZnO: 50 SiO2: (20-x) CuO (ZSC) loaded with E102 (tartrazine dye) (where x = 0.02, 0.05, 0.07 wt.%) nanoclusters have been explored. These nanoclusters were synthesized by a sol-gel route followed by a very controlled crystallization process at 500 °C. The phase formation, structural modification, and particle distribution behavior of these nanoclusters have been studied using XRD and TEM analysis to monitor the domestic environment for ZCS-E102. The optical transmission and reflection properties of nanoclusters in the UV–Vis-NIR range were studied for the present nanoclusters from which the optical absorption was calculated. Tauc method is employed to estimate the type and value of energy needed to gap transition from absorption data. The direct and indirect gap shows decreased energy need for its transition by E102 concentration increase. The antimicrobial potentials of four synthesized nanoclusters were performed against some pathogenic microbes. The toxicity performance of all studied nanoclusters is measured. Results revealed that ZSC-0.07E102 is showed an effective antimicrobial action against four tested pathogenic microbes in terms of excellent inhibitory effect and biocompatibility show noticeable potential in the antimicrobial application. Therefore, this proficient nanomaterial is a promising choice for biomedical purposes.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3