A New Nano-Design of a Fault-Tolerant Coplanar RAM with Set/Reset Ability Based on Quantum-Dots

Author:

Wei XiongORCID,Min Guo

Abstract

Quantum Dot Cellular Automata (QCA) is a recent technology that has piqued researchers’ interest because of its small size and low energy consumption. With the help of quantum dots, the QCA technology delivers a new computational foundation for constructing digital circuits. Medical imaging and quantum computing are just a few applications for quantum dots. Quantum dots are nanocrystals that transmit data at the nano-scale. Since the memory is an important digital circuit, this work proposes a fault-tolerant loop-based coplanar Random Access Memory (RAM) with set/reset capability that uses the QCA rules. The memory cell’s operation is verified both physically and through simulations with the QCADesigner program. The quantum cost of the proposed memory cell shows that it has a negligible quantum cost. The proposed QCA-based memory circuit performs well in simulations, with 96 QCA cells and the output signal generated after 0.75 clock phases. The gates and wire in this design have around 85 percent better fault-tolerant capability than the best-presented memory systems. Furthermore, this circuit can tolerate most cell omission, displacement, misalignment, and deposition faults. This structure can be used to create high-performance higher-order fault-tolerant memory structures.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Reference35 articles.

1. 1/f noise spectroscopy and noise tailoring of nanoelectronic devices;Balogh,2021

2. Path-optimized nonadiabatic geometric quantum computation on superconducting qubits;Ding;Quantum Sci. Technol.,2021

3. Enhanced supercapacitor performance and ferromagnetic behavior of Ni-doped CeO2 quantum dots;Ponnar;J. Mater. Sci., Mater. Electron.,2020

4. A review of graphene nanoribbon field-effect transistor structures;Lone;J. Electron. Mater.,2021

5. QCA-Based RAM Design Using a Resilient Reversible Gate with Improved Performance;Singh;J. Circuits Syst. Comput.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3