A Simplified Equivalent Circuit Model for the Photo-Charging Process of Carbon-Based Quasi-Solid Photosupercapacitors

Author:

Gallegos-Pérez Waldo RobertoORCID,Corpus-Mendoza Asiel N.ORCID,Lobato-Peralta Diego Ramon,Cuentas-Gallegos Ana Karina,Camacho-Cáceres Jaquelina,Arias-Ramos Carlos Fabián,Hu Hailin

Abstract

Solar irradiation can be converted into electrical current by a solar cell, which in turn can be stored in a supercapacitor. The coupling of a solar cell and a supercapacitor, called photosupercapacitor, shows promising applications that demand multidisciplinary studies to understand its functionality and potential. Normally, supercapacitors are characterized with potentiostats or power sources that provide a constant current or voltage, however, we find that the photocurrent provided by a solar cell in a photosupercapacitor configuration largely depends on the voltage stored in the supercapacitor connected in parallel to the solar cell. Therefore, we use a simplified equivalent circuit model to demonstrate that the charging time of a photosupercapacitor depends mainly on its capacitance, and to a lesser extent, on its resistance. At the same time, the maximum output voltage of the photosupercapacitor depends on the saturation and short circuit currents of the solar cell. The numerical results confirm qualitatively the experimental behavior of the photo-charging curves of quasi-solid supercapacitors, which consist of polyvinyl alcohol (PVA)-H2SO4 electrolyte for both activated carbon or reduced graphene oxide-based electrodes. The latter presents better electrochemical characteristics that optimize the operation of the photosupercapacitor. The electrical circuit analysis is a useful tool to guide further improvements in the photosupercapacitor design and fabrication.

Funder

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Consejo Nacional de Humanidades Ciencias y Tecnologías

Laboratorio Nacional de Conversión y Almacenamiento de Energía

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3