Free-Standing Large-Area Nanoperforated Gold Membranes Fabricated by Hopping Electrodeposition

Author:

Monaico Eduard V.ORCID,Monaico Elena I.ORCID,Ursaki Veaceslav V.ORCID,Tiginyanu Ion M.ORCID

Abstract

A room-temperature two-step cost-effective electrochemical technology is proposed for the preparation of free-standing Au nanomembranes. A thin Au film with the thickness less than 100 nm was deposited by pulsed electroplating on a GaAs substrate in the first step, while electrochemical etching was applied in the second technological step to introduce porosity into the GaAs substrate underneath the Au film. It has been shown that detachment of the film from the substrate occurs at optimized parameters of anodic etching. Scanning electron microscopy imaging of the deposited Au film revealed its nanoparticulate structure generated via the mechanism of hopping electrodeposition, i.e. the film proved to consist of a monolayer of Au nanoparticles with the mean diameter around 20–30 nm. It was found that nanoholes with the diameter controlled by the duration of negative voltage pulses can be introduced into the Au film during electroplating. The purity of the detached Au nanomembranes was demonstrated by the energy dispersive X-ray analysis. The flexibility, nanoparticulate structure along with possibilities to transfer the prepared nanomembranes to various substrates make them promising for new optical, plasmonic and electronic applications.

Funder

Ministry of Education, Culture and Research of Moldova

European Commission

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MICRO- AND NANO-ENGINEERING OF SEMICONDUCTOR COMPOUNDS AND METAL STRUCTURES BASED ON ELECTROCHEMICAL TECHNOLOGIES;Annals of the Academy of Romanian Scientists Series on Physics and Chemistry;2024-08-30

2. HYBRID METAL-SEMICONDUCTOR STRUCTURES BASED ON InP AND GaAs NANOTEMPLATES FOR ELECTRONIC AND PHOTONIC APPLICATIONS;Annals of the Academy of Romanian Scientists Series on Physics and Chemistry;2024-08-30

3. Self-organized porous semiconductor compounds;Encyclopedia of Condensed Matter Physics;2024

4. Porous Semiconductor Compounds with Engineered Morphology as a Platform for Various Applications;physica status solidi (RRL) – Rapid Research Letters;2023-03-25

5. Input of Moldova in shaping modern electrochemical science and technology;Journal of Solid State Electrochemistry;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3