Controllable Fabrication of Silicon Nanopore Arrays by Two-Step Inductively Coupled Plasma Etching Using Self-Assembled Anodic Aluminum Oxide Mask

Author:

Tian JiliORCID,Meng Xianghua,Liu Yang,Cui Jie,Li Min,Fan Kaiguo,Zhang Qi,Zhang Huayu

Abstract

Silicon nanopore arrays (SiNPs) were prepared by a two-step inductively coupled plasma (ICP) etching process using a self-assembled anodic aluminum oxide film mask. The influence of etching parameters (first-step etching time, Cl2 proportion in the etching gas, etching pressure, ICP power, and radio frequency (RF) power) on the morphology of the SiNPs were systematically investigated. The results revealed that the first step of ICP etching can effectively remove the barrier layer of the mask. Higher Cl2 proportion and lower etching pressure increase the chemical corrosion and physical bombardment of ICP etching, respectively, which may damage the porous morphology. ICP power affects both chemical reaction etching and physical bombardment, but the RF power mainly affects physical etching. The etching rate is positively correlated with Cl2 proportion and RF power, and negatively correlated with etching pressure. The optimized first-step etching time, Cl2/Ar ratio, etching pressure, ICP power and RF power for high-quality SiNPs are approximately 10 s, 60%, 7 mTorr, 900 W and 100 W, respectively. Precise control of the pore size and depth of the SiNPs can be achieved using this controllable growth process. These results demonstrate a simple and controllable way to achieve good quality SiNPs with desired sizes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3