Electrical Transport Properties and Hopping Mechanism of ZrCuSiAs Type Compound GdFeAsO

Author:

Mishra Gyanendra Kumar,Pradhan Prafulla Kumar,Mohanty N. K.ORCID

Abstract

The iron-based ceramic GdFeAsO has been prepared using the solid-state reaction method. This material exhibits unique properties, showing superconductivity at extremely low temperatures and behaving as a semiconductor at high temperatures. Raman spectroscopy revealed various Raman active modes in the sample. UV-visible spectroscopy was employed to study the optical properties of the material in the wavelength range of 200 nm–800 nm. Using Tauc’s plot, the optical band energy value of the sample wasestimated to be approximately 2.78 eV. The electrical characterizations have been performed through an impedance analyzer. Additionally, the sample displayed negative temperature coefficient of resistance (NTCR) behavior and positive temperature coefficient resistance (PTCR). The thermistor parameters are evaluated using the bulk resistance at various temperatures. This opens up potential uses for thermistors in devices like fuses and temperature sensors. The ac conductivity spectrum of the sample followed both Jonscher’s universal power law and the Arrhenius equation. The activation energy was calculated for different temperature regions. The correlated barrier hopping (CBH) model is used to analyze the electrical conduction mechanism in the sample. This study provides insights into the unique electrical and optical properties of the GdFeAsO ceramic and sheds light on its potential applications in various fields.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3