Optimizing Device Dimensions for Dual Material Junctionless Tree-FET: A Path to Improved Analog/RF Performance

Author:

Beebireddy DivyaORCID,Fatima Kaleem,L. Nirmala Devi

Abstract

This comprehensive study delves into the intricate analysis of the electrical and analog/RF performance of the Dual Material (DM) junctionless (JL) Tree-FET. During the optimization process, various DC and analog/RF metrics were taken into account. It is observed that, as the gate length decreases (12 nm to 8 nm), there is an increment in drain induced barrier lowering (DIBL), switching ratio (Ion/Ioff), and subthreshold swing (SS). Conversely, reducing the size of TNS (and WNS) from 10 nm to 5 nm (and 20 nm to 10 nm, respectively) lead to notable improvements, with a 34.4% (21.01%) decrease in SS, 93.19% (58.86%) decrease in DIBL, and 98.6% (41.06%) increase in Ion/Ioff. Furthermore, the analog/RF performance metrics of the device is carefully examined across dimensional variations, revealing significant improvements at the optimal values. Additionally, the study extends to the evaluation of inverter circuit characteristics with DM JL Tree-FET. Remarkably, the static noise margin (SNM) and delay exhibit 337.3 mV and 3.053 ps, respectively, positioning the device as a prime candidate for applications demanding low power consumption and high-frequency operation in future technology nodes.

Publisher

The Electrochemical Society

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3