Review—Chemical Structures and Stability of Carbon-doped Graphene Nanomaterials and the Growth Temperature of Carbon Nanomaterials Grown by Chemical Vapor Deposition for Electrochemical Catalysis Reactions

Author:

Chadha UtkarshORCID,Sinha SanyuktaORCID,Jonna Jaidhitya,Goswami Maitreya,Ghani Hammad,Nair Karan,Pandey Neelesh,Kataray TarunORCID,Selvaraj Senthil KumaranORCID,Bhardwaj PreetamORCID,Banavoth Murali,Sonar Prashant

Abstract

Carbon nanotubes (CNTs) have been studied extensively utilizing the catalytic chemical vapor deposition (CCVD) process for several decades. CCVD is seen to have a better degree of control and scalability. CNTs have proved to be useful in single-molecule transistors, Scanning Electron Microscope (SEM) tips, gas and electrochemical storage, electron field emitting flat panel displays, and sensors. This paper summarizes various stabilizing agents such as cobalt ferrite and molybdenum disulphide that can increase the electrochemical activity of the Carbon Doped-Graphene Nanomaterials as Graphene doped with carbon shows a significant improvement in the properties in various aspects. We also investigated the electrochemical applications where CNTs are used as a prerequisite. Carbon nanotubes are seen in biosensors, energy storage, conductive plastics, and power fuel cells. Carbon nanomaterials’ influence on symmetrical and asymmetrical supercapacitors, carbon nanomaterials to power dye-synthesized solar cells, and the importance of CVD in the synthesis of carbon nanomaterials were also investigated.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3