Investigation of the Amplified Spontaneous Emission Threshold of Cesium Lead Bromide Perovskite Quantum Dots at Different Excitation Wavelengths

Author:

Qaid Saif M. H.ORCID,Ghaithan Hamid M.,Aldwayyan Abdullah S.

Abstract

The goal of this research is to see how excitation wavelength affects steady-state photoluminescence (PL), time-resolved photoluminescence (TRPL), and amplified spontaneous emission (ASE) in CsPbBr3perovskite quantum dots (PQD). At PL and ASE, a plausible mechanism for explaining the excitation wavelength-dependent phenomena was proposed. The PL and ASE properties of CsPbBr3PQD as optical materials were examined experimentally at excitation wavelengths of 355–450 nm. An optical parametric amplifier system was used to accomplish optical pumping utilizing a laser pulse with a pulse duration of 70 ps. The ASE threshold was explored and compared the ratio of photons in the pump pulse to band gap energies. The excitation wavelength (λex) has a considerable influence on the ASE behavior, with high optical densities correlating to optimal excitation, as evidenced by the absorption spectrum, which has a larger absorption coefficient. Furthermore, the energy density at the ASE threshold was closely correlated with theλexfollowing the absorption spectrum. Also, it has been demonstrated that changing the excitation wavelength reduces the PQD PL lifetime. Finally, electron-hole pairs can be produced at a reasonable depth from the film’s surface using the appropriate excitation wavelength.

Funder

King Saud University

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3