Abstract
Boron Nitro silicon (Si2BN), as a 2D material, is used in a wide variety of applications due to its outstanding electrical properties. The electrical parameters of Si2BN need to be defined and engineered precisely to improve the device performance. This paper investigates the band structure and effective parameters of Si2BN using the tight binding approach. The unit cell including 4 atoms is considered for monolayer structure and the Schrodinger equation is calculated to obtain the energy levels. The effect of hopping energy on Si2BN band structure is also studied considering the conduction and valence bands. It is demonstrated that the distance between conduction and valance bands can be modified using the effect of lattice constant variation. The obtained results show that the nature of matter changes with fluctuating hopping energy of Si2BN. Alteration of the material properties can be explained in the form of applied perpendicular electric field to the Si2BN surface or strain and stress effects. The overlap energy variation in the form of band gap modulation is also explored and it is concluded that the band gap is decreased by strengthening of Silicon–Boron interaction. This research emphasized that obtained results are now suitable for being employed in different applications of nanoelectronics.
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献