Abstract
Here, we demonstrate a two-step electrochemical approach for the synthesis of cobalt chalcogenides, CoQ (Q = S or Se) based on the prior modification of a substrate with S or Se, followed by electrochemical reduction in a Co2+-complexing electrolyte to afford CoS or CoSe in film form. The two-step strategy circumvents a common problem with the electrodeposition of metal chalcogenides, namely admixture of the target material with undesired phases such as excess metal or the chalcogen. The strategy was combined with complexation to shift the free metal deposition regime to more negative potentials. Compositional analysis showed that as-synthesized films retain a stoichiometric ratio of Co and S or Se and XPS analysis confirmed the formation of CoS and CoSe. The electrodeposited films were successfully used as electrocatalysts for the triiodide/iodide redox system and showed comparable (or even, superior) performance to a Pt electrode. As also demonstrated both by the present work and by companion studies in our laboratories, the two-step strategy is generally applicable to a variety of other metal chalcogenides.
Funder
National Research Foundation of Korea
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献