Porous Structure Induced Dielectric Loss Suppression for CB-g-PFOTES/PVDF Composites

Author:

Liu HuiORCID,Li Cui,Ma LiliORCID,Xin MengORCID,Wen Xin

Abstract

Polymer-based dielectrics have long been the focus of research in the field of flexible thin-film capacitors. However, the low energy storage density of polymer-based dielectrics has been an obstacle for practical applications, since the enhancement of the dielectric constant is often accompanied by an increase in the dielectric loss. In this study, a novel core–shell structured CB-g-PFOTES nanoparticles with porous carbon black (CB) as the core and 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES) as the outer shell were successfully synthesized and further embedded into polyvinylidene fluoride (PVDF) matrix. As a result, the core–shell structured CB-g-PFOTES nanoparticles displayed notable improvements in the dielectric properties of composites. Typically, the CB-g-PFOTES/PVDF composites with a filler content of 2.5 wt% exhibited outstanding dielectric properties with a high dielectric constant of 33.2 and an extremely low dielectric loss of 0.0238 at 102 Hz. The significant suppression of dielectric loss was due to the fact that the porous structure of the CB effectively limits the interfacial charge transfer within the polymer matrix. This work provides a novel type of nanofiller for the fabrication of high dielectric nanocomposites, which is expected to further realize application in high energy storage density dielectric materials.

Funder

National Natural Science Foundation of China

Taishan Scholar Constructive Engineering Foundation

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3