Abstract
The influence of the contracted corrole macrocycle, in comparison to the larger porphyrin macrocycle, on the electronic structure of nickel was studied with X-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Synthesis and in situ characterization of the Ni complexes of octaethylporphyrin (NiOEP) and hexaethyldimethylcorrole (NiHEDMC) were performed in ultra-high vacuum. XPS and NEXAFS spectra reveal a +2 oxidation state and a low-spin d8 electron configuration of Ni in both complexes, despite the formal trianionic nature of the corrole ligand. UPS, in combination with density functional theory (DFT) calculations, support the electronic structure of a Ni(II) corrole with a π-radical character of the ligand. The NEXAFS spectra also reveal differences in the valence electronic structure, which are attributed to the size mismatch between the small Ni(II) center and the larger central cavity of NiOEP. Analysis of the gas-phase structures shows that the Ni−N bonds in NiOEP are 4%–6% longer than those in NiHEDMC, even when NiOEP adopts a ruffled conformation. The individual interactions that constitute the Ni−ligand bond are altogether stronger in the corrole complex, according to bonding analysis within the energy decomposition analysis and the natural orbitals for chemical valence theory (EDA-NOCV).
Funder
Goethe-CSC Frankfurt
HLRS Stuttgart
Bundesministerium für Bildung und Forschung
HRZ Marburg
Deutsche Forschungsgemeinschaft
Deutsches Elektronen-Synchrotron
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献