Structural, Thermoelectric, Electronic, and Magnetic Properties of Pristine Intermetallic Rare-Earth-Based XMn2Si2 (X=Dy, Er) Compounds

Author:

Zada Zeshan,Khan Junaid,Khan Abdul Ahad,Reshak Ali H.ORCID,Ali Dania,Rehman Fazal Ur,Urrahman Inayat,Saqib Muhammad,Irfan Muhammad,Ramli Muhammad M.

Abstract

Detailed Structural, thermoelectric, electronic and magnetic properties of the ternary rare-Earth based XMn2Si2 (X=Dy, Er) Compounds, are investigated using the full-potential linearized augmented-plane wave (FP-LAPW) method with generalized gradient approximation (GGA+U) in ferromagnetic phase. The basic calculations of optimization are found with the support of (PBE-GGA) to realize theoretical consistency with existing experimental consequences, although for the enhancement of magneto-electronic part the (GGA+U) technique is employed. We have identified theoretically that the ferromagnetic is the most suitable phase among three studied phases for these compounds agree well with previous experimental works. The electronic band structure indicates that these compounds are metallic through both spin channels in the FM phase. A secure hybridization occurs between the elements Dy/Er-f and Mn-d states in the valence band and the Si-p state in the conduction band. The total magnetic moments verify that the rare-Earth based DyMn2Si2 ternary inter-metallic compound showcases stronger ferromagnetic behavior patterns than the ErMn2Si2 compound. We estimated the Seebeck coefficient S, electrical and thermal conductivities, and the ZT in this study over the temperature range of 0 to 800 K. The ErMn2Si2 is a viable contender for high-temperature applications in waste heat management because of its high ZT values in the high-temperature region in thermoelectric devices.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3