Impedance Response of Insulator Nanoparticle Films with Condensed Chemical Vapor: Structural Isomers and Aprotic Chemicals

Author:

Kano S.ORCID,Mekaru H.

Abstract

Rapid electrical analysis of chemical liquids is a promising technique for on-site evaluation. In this study, the electrical impedance response of insulator nanoparticle films with condensed chemical vapors was investigated in structural isomers and polar aprotic chemical liquids. Headspace vapor was condensed in the nanoscale void between the nanoparticles, and ionic conduction subsequently occurred under an AC voltage. The transient electrical impedance response depends on the vapor pressure and conductivity of the liquid isomers. A chemical liquid of the structural isomers was identified by monitoring the impedance during exposure to its headspace vapor. The response time of the film impedance was 10.6, 4.7, 7.5, and 2.4 s for 1-butanol, 2-butanol, 2-methyl-1-propanol, and tert-butyl alcohol, respectively.  Furthermore, the current conduction mechanism in the polar aprotic chemicals was discussed. Although these chemicals did not form molecular networks with the hydrogen bonds, the electrical current flowed in the system. We proposed that hydrogen bonds mediated by water molecules were formed and proton hopping through the condensed polar aprotic liquid occurred. This proposed method has the potential to detect protic and aprotic polar chemical vapors.

Funder

Japan Society for the Promotion of Science

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3