Abstract
Since graphene was first isolated in 2004, research related to graphene-based 2D material for surface plasmon resonance (SPR) biosensor applications has increased. Recently, other types of 2D materials such as Transition Metal Dichalcogenides have also been investigated. This 2D material has exceptional optical and electronic properties and can be utilized to improve the performance of biosensors. The performance of SPR biosensors can be determined based on their sensitivity and detection accuracy (DA). To find out the sensitivity and DA, simulation approach can be done. In this paper, we perform SPR simulations on monolayer and multilayer structures of 2D material, namely graphene, graphene oxide, molibdenum disulfida, and tungsten diselenide. In addition, we also investigated the sensitivity and DA of SPR biosensors on hybrid structures. The results obtained indicate that the use of 2D material can increase the sensitivity of the SPR up to 5 times when compared to conventional structures. Of the four types of 2D material investigated, GO is the material with the best accuracy. If the SPR biosensor performance is determined based on the FOM value, the best performance is owned by the GO-based SPR structure with a sensitivity of 151.87 deg/RIU and DA 0.22 deg-1.
Funder
Ministry of Science and Technology of the Republic of China
Mackay Hospital
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献