WS2-Pt Nanostructure-Based Composite for Hydrogen Gas Sensing with Ultra-Fast Response and Recovery Rates

Author:

Gottam Sandeep Reddy,Wang Li-Wen,Wu Tai-Yu,Liu Yi-Hung,Chu Sheng-YuanORCID

Abstract

Hydrogen is regarded as a secondary energy carrier derived from hydrogen evolution reactions. To ensure safety when utilizing this hazardous gas, hydrogen gas sensors with rapid response and recovery times, high sensor sensitivity, and stability are essential. A high surface-to-volume ratio with complete adsorption and desorption of ions renders WS2 a promising candidate for hydrogen gas sensor applications. This study introduces a novel high-performance hydrogen gas sensor based on a metal sulfide-platinum (WS2-Pt) composite. The WS2-Pt composite was successfully synthesized using a solution-based process and spin-coating techniques. WS2-Pt nanostructures were densely distributed on a gallium nitride/sapphire substrate, and a hydrogen sensing device was fabricated. The metal sulfide/platinum composite demonstrated ultra-fast sensor response of approximately 3 s toward 500 ppm hydrogen with a satisfactory sensor sensitivity. The response rate was notably encouraging. This research represents the first attempt in the sensor domain to enhance the performance of hydrogen sensing devices using metal sulfide/Pt active layers.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3