Hydrogen Termination Effect on SiO2/Si Interface State Density in CH3O-Molecular-Ion-Implanted Silicon Epitaxial Wafer for CMOS Image Sensors

Author:

Okuyama RyosukeORCID,Kadono Takeshi,Onaka-Masada Ayumi,Suzuki AkihiroORCID,Kobayashi KojiORCID,Shigematsu Satoshi,Hirose Ryo,Koga Yoshihiro,Kurita Kazunari

Abstract

The reduction in SiO2/Si interface state density (Dit) at the SiO2/Si interface region is important to improve the performance of complementary metal-oxide semiconductor (CMOS) image sensors. The CH3O-ion-implanted region stores hydrogen and releases the stored hydrogen during the subsequent heat treatment. This study demonstrates that a CH3O-ion-implanted epitaxial silicon wafer can reduce the Dit and Pb0 center density in SiO2/Si interface regions, as analyzed by quasi-static capacitance–voltage and electron spin resonance measurements, respectively. Both Dit and Pb0 center density in the CH3O-implanted wafer decreased with increasing heat treatment temperature. Moreover, the activation energy is estimated to be 1.57 eV for the hydrogen termination reactions induced by the CH3O-ion-implanted wafer. The activation energy is close to those of hydrogen molecules and Si dangling bonds at the SiO2/Si interface. This result means that Dit can be reduced by hydrogen from inside the silicon wafer, regardless of the heat treatment atmosphere. It has unique characteristics not found in conventional silicon wafers. The termination effect of the CH3O-molecular-ion-implanted epitaxial silicon wafers can contribute to the high electrical performance of CMOS image sensors.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3