Comparative Study of Chemical Activation and Physical Activation Approach to Optimize Biomass-Based Doped Carbons for Energy Applications

Author:

Denmark IrisORCID,Alam Ahmad,Ahsan Rayaan,Watanabe FumiyaORCID,Viswanathan Tito,Siraj NoureenORCID

Abstract

Two approaches have been utilized to optimize the energy storage characteristics of doped carbon materials derived from Lignosol, a biomass product, to address the rising energy demand issues. Herein, phosphorus and nitrogen co-doped carbon (PNDC) materials with varying doping agent volumes were synthesized by utilizing microwave irradiation. Chemical activation and physical activation were employed to enhance these materials’ characteristics. Chemical activation was performed in a one-pot, single-step process, rather than a traditional multi-step protocol, using small amounts of potassium hydroxide. Furthermore, the physical activation method required multiple steps: doped carbon was prepared via microwave, exposed to water, filtered, frozen and then dried. With this, the expansion properties of water at freezing temperatures were exploited to alter the materials’ surface characteristics. All materials were characterized and compared for their physicochemical properties. All defect ratios supported the presence of doping. Additional results revealed that both chemical and physical activation approaches effectively modify the topographical features as well as the electrochemical activity (charge storage) of the doped carbon materials. The chemically activated doped carbon exhibited the highest resulting surface area of 1352 m2 g−1 and a specific capacitance value of 347 F g−1 with excellent cycling stability as compared to other similarly synthesized materials.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3