Investigation of Zn Doped Li1.5Al0.5−xZnxGe1.5(PO4)3 (x = 0, 0.1 & 0.2) as a Solid Electrolyte for Li Ion Batteries

Author:

Subash Sruthy,Faizal Abu,Mercy T. D.,Bharathi K. KamalaORCID

Abstract

All solid lithium-ion batteries (ASLB) have gained a lot of attention as it could deliver high energy and power density. In order to completely establish ASLB, proper understanding of solid electrolyte is very vital and the research from diverse point is still undergoing. Among them, NASICON-type phosphate based solid electrolytes are one of the promising materials due to good ionic conductivity and atmospheric stability. Addition of proper dopants into the parent material could cause an increment in their ionic conductivity as well as stability, thus fitting the material apt as solid electrolyte. This study aims in understanding the effect of ionic conductivity and stability of Lithium Aluminium Germanium Phosphate (LAGP) material upon adding Zinc as dopant material. We explored the effect of structural, ionic conductivity, stability against Li and Ac conductivity properties of Li1.5Al0.5−xZnxGe1.5(PO4)3 solid electrolyte with x = 0, 0.1 and 0.2. Our study showed that doping of aluminium with slightly bigger Zn ion could enhance the stability and conductivity of the material without changing the crystal structure. When x = 0.1 the ionic conductivity of the material attained is 1 × 10−5 S cm−1 at RT, which reaches 2.57 × 10−5 S cm−1 at 60 °C. Such a change in conductivity arises due to the expansion of ionic pathways which can be further tuned by exploring the limiting concentration 0 ≤ x < 0.1. Moreover, the sample also showed good stability at 0.03 and 0.05 mA cm−2 current densities against Li metal. Present study shows that Zn doping can improve the ionic conductivity of LAGP moderately and it can be used as a solid electrolyte for fabricating all-solid-state batteries.

Funder

Vikram Sarabhai Space Centre

Publisher

The Electrochemical Society

Reference30 articles.

1. A review of lithium-ion battery safety concerns : the issues, strategies and testing standards;Chen;J. Energy Chem.,2021

2. Solid-State Li—metal batteries : challenges and horizons of oxide and sulfide solid electrolytes and their interfaces;Kim;Adv. Energy Mater.,2020

3. Recent progress for all solid state battery using sulfide and oxide solid electrolytes;Shoji;J. Phys. D: Appl. Phys.,2019

4. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries;Lian;J. Mater. Chem. A,2019

5. Sulfide solid electrolytes for lithium battery applications;Lau;Adv. Energy Mater.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3