Study of ΒΕSOI MOSFET Reconfigurable Transistor for Biosensing Application

Author:

Yojo L. S.ORCID,Rangel R. C.ORCID,Sasaki K. R. A.ORCID,Martino J. A.ORCID

Abstract

The Back Enhanced SOI (BESOI MOSFET) is a planar reconfigurable device, which transistor type (n- or p-type) can be programed by the back-gate bias. This transistor is explored in this paper for biosensing application through numerical simulation, based on the fabricated device experimental results. The permittivity value and the charges inside the biomaterial deposited on the underlap region (between gate and source/drain contacts) influence the BESOI MOSFET drain current. The dimensions of the device were evaluated in order to optimize the sensitivity. Among the studied parameters, the underlap length was the most relevant parameter. For short underlap devices, the fringe electric field from the front gate electrode benefits the permittivity-based sensors, while long underlap length devices have a bigger sensitive area in which the charge-based sensor presented better results. Also, the n-type biased device presented higher sensitivity to positively charged materials, while the p-type biased one presented better result for negatively charged materials. The parameters optimization resulted in one order magnitude improvement of the sensitivity for the permittivity-based sensor, for both n- and p-type. As for the charge-based sensor, the optimized device presented twice as bigger sensitivity for the n-type, and at least eight times improvement for the p-type device. This fact represents an advantage of the BESOI structure as the type of the device can be chosen by the back-gate bias.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3