Selective Electrochemical Sensing of Riboflavin Based on Functionalized Multi-Walled Carbon Nanotube/Gold Nanoparticle/Pencil Graphite Electrode

Author:

Dokur EbrarORCID,Gorduk OzgeORCID,Sahin YucelORCID

Abstract

In this study; an easy, practical, and selective sensor has been developed for the electrochemical determination of riboflavin. To prepare the modified electrode, the gold nanoparticle was deposited on the pencil graphite electrode (AuNP/PGE) by the method of chronoamperometry at −3.0 V for 30 s in 0.5 M H2SO4 solution containing 10 mM tetrachloroaurate. Functionalized multi-walled carbon nanotube (f-MWCNT) solution was dropped on prepared AuNP/PGE and the functionalized multi-walled carbon nanotube/gold nanoparticle/pencil graphite electrode (f-MWCNT/AuNP/PGE) was prepared for measurements. Characterization studies of the prepared sensor were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) methods. The surface morphology of the prepared sensor was investigated by field emission scanning electron microscopy (FESEM). Differential pulse voltammetry (DPV) was used to carry out electrochemical measurements in phosphate buffer solution pH 4.0. Limit of detection (LOD) and limit of quantitation (LOQ) values were found to be 0.0352 and 0.118 μmol l−1, respectively. The fabricated sensor showed excellent anti-interference ability against ascorbic acid (AA) and glucose (G). The applicability of the constructed sensor to real samples was investigated and good recovery values were achieved. As a result, it has been seen that the modified electrode is applicable in applications of riboflavin determination.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3