Abstract
A surface plasmon resonance photonic crystal fiber-based highly sensitive temperature sensor is proposed. The surface plasmon resonance is induced by injecting toluene into the central hole and ethanol into the side holes coated with gold film. Optimal sensor sensitivity by optimizing the size and position of the air holes. The coupling mechanism and sensing performance of the proposed sensor are analyzed. The results indicate that in the sensing range of 0 °C−70 °C, the highest figure of merit (FOM) is 0.1169/°C and the average temperature sensitivity can reach 7.13 nm/°C. Such temperature sensor exhibits tremendous potential in the domain of temperature detection.
Funder
Natural Science Foundation of Sichuan Province
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献