Abstract
Semiconducting carbon nanotubes (CNTs), characterized by high carrier mobility and atomic thickness, are considered ideal channel materials for building high-performance and ultimate-scale field-effect transistors for future electronics. Here, we present a data-calibrated compact model of CNT field-effect transistors (CNTFETs) that incorporates temperature effects using the virtual source approach. The proposed model also includes the self-heating effect. Temperature effect was characterized by the influence of temperature on devices, achieved through establishing a temperature-dependent semi-empirical model of carrier mobility and carrier velocity. The proposed model can be easily implemented in a simulator. We designed a two-stage operational amplifier (OPAMP) using the proposed model at 32 nm technology. Compared with other studies, the designed CNTFET-based OPAMP demonstrates lower power consumption, which is beneficial for exploring the biological applications of low-power analog circuits in portable electronic devices. Furthermore, the impact of thermal variations on the design of OPAMP, as per the proposed model, was delineated. Investigations revealed that our circuit maintains a high common mode rejection ratio, which diminishes as the temperature increases and exhibits a moderate gain value that escalates with temperature.
Publisher
The Electrochemical Society