A Compact Model for Carbon Nanotube Field Effect Transistors Incorporating Temperature Effects and Application for Operational Amplifier Design

Author:

Zou YajieORCID,Liu HongweiORCID,Liu Yiying,Yin Minghui,Zhang Weihua,You Yunxia,Zhou Huanhuan,Wang Chen

Abstract

Semiconducting carbon nanotubes (CNTs), characterized by high carrier mobility and atomic thickness, are considered ideal channel materials for building high-performance and ultimate-scale field-effect transistors for future electronics. Here, we present a data-calibrated compact model of CNT field-effect transistors (CNTFETs) that incorporates temperature effects using the virtual source approach. The proposed model also includes the self-heating effect. Temperature effect was characterized by the influence of temperature on devices, achieved through establishing a temperature-dependent semi-empirical model of carrier mobility and carrier velocity. The proposed model can be easily implemented in a simulator. We designed a two-stage operational amplifier (OPAMP) using the proposed model at 32 nm technology. Compared with other studies, the designed CNTFET-based OPAMP demonstrates lower power consumption, which is beneficial for exploring the biological applications of low-power analog circuits in portable electronic devices. Furthermore, the impact of thermal variations on the design of OPAMP, as per the proposed model, was delineated. Investigations revealed that our circuit maintains a high common mode rejection ratio, which diminishes as the temperature increases and exhibits a moderate gain value that escalates with temperature.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3