Simulation of Intercalation Processes in Poorly Conductive Materials

Author:

Zhigalenok Yaroslav,Kokhmetova Saule,Malchik Fyodor,Starodubtseva Alena,Galeyeva AlinaORCID,Kurbatov Andrey

Abstract

To determine the impact of the electrode composite parameters of metal-ion intercalation into host materials with poor conductivity, the processes were simulated with varying possible values of parameters. A physical model is proposed for the intercalation into an active material particle that has point contacts with an electronic conductor, considering the change in phase conductivity during intercalation. The basis of the model are the processes of electron migration through the phase of the poorly conductive material to its interface with the electrolyte, intercalation of cations from the electrolyte into the cathode material, formation of intercalated phase and its subsequent diffusive propagation into the material bulk. The finite element method implemented in COMSOL Multiphysics software was used for numerical simulation. The effect of electrical conductivity, kinetic parameters at the interfaces, mass transfer of intercalated atoms in the host material and the number of electronic contacts with cathode particle were simulated. The strong dependence of the kinetics of the de/intercalation process on the number of electronic contacts on the particle is discovered. It is shown that starting from certain values of the conductivity of the intercalation material, the reaction can be described by the equipotential surface approximation.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3