High-Efficiency InGaN Photo Cell Irradiated by 532 nm Laser with AlGaN Electron Blocking Layer

Author:

Shan Heng-ShengORCID,Liu Sheng-Wei,Wang Ning,Li Xiao-YaORCID

Abstract

In this paper, a high-efficiency InGaN photo cell irradiated by 532 nm laser (at green wavelength) with AlGaN electron blocking layer (EBL) is proposed based on the blue-green light window effect of seawater. Firstly, the InGaN/GaN multiple quantum wells (MQWs) structured material intercalated with AlGaN EBL was designed and grown for InGaN photo cells. Then, by measuring the AFM, XRD and PL of the material, it is found that the insertion of AlGaN EBL can effectively reduce the defect density and improve the steepness of the interface in the active region. Further, based on the above material characteristics, the performance of the InGaN photo cells with AlGaN EBL is evaluated in Silvaco software under 532 nm laser irradiation. The results show that the introduction of AlGaN EBL in InGaN photo cell can not only decrease the non-radiative recombination rates, but also reduce the piezoelectric polarization effect, which contribute to the transport of effective photo-generated carriers and eventually improve the conversion efficiency by 13.325% compared to that with conventional structure. These findings provide critical new insights on high-efficiency GaN-based Photo Cell irradiated by 532 nm laser in the application of underwater communications.

Funder

National Natural Science Foundation of China

Shanghai Natural Science Foundation

the Natural Science Basic Research Program of Shaanxi

Key Laboratory of Wide Band-gap Semiconductor Materials, Ministry of Education, Xidian University

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3