Analysis of CNT and rGO Mediation for an Efficient Super-Capacitive Response in Cr-Doped Co3O4 Based Composites

Author:

Faryad Umar,Imran Muhammad,Zawar Sidra,Yaqub Muhammad Atif,Murtaza Ghulam,Ramay Shahid M.,Atiq ShahidORCID

Abstract

The synthesis of novel and high capacitance electrode materials has attracted much attention over the last few decades to meet the needs of electrode materials in supercapacitors. Cobalt oxide, one of several vanadium oxides, has recently gained popularity due to its unique layered structure, phase transition, and applications in supercapacitors. Here, we present structural, morphological, and electrochemical analysis of Cr-doped Co3O4 nanostructures and their carbon nanotubes/reduced graphene oxide (CNT/rGO) based composites. Hydrothermal and solvothermal routes are followed to prepare the samples. The active material is developed via a polymer-based binder and is used as the electrode in a three-electrode electrochemical system. X-ray diffraction confirms the spinel-type cubic crystal structure, while the stoichiometric elemental contents are verified via an energy dispersive X-ray spectroscopy. Well-shaped layered growth of the nanocomposites is revealed by field emission scanning electron microscopy. The electrochemical analysis is performed using a 2 M KOH electrolyte solution and a three-electrode electrochemical setup. The pure and Cr-doped nanocomposite samples reveal a pseudo capacitive behavior in all samples. The systematic capacitive and resistive response of the samples has also been presented in this report. The aforementioned attributes make the synthesized specimen a potential candidate for an electrode material.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3