Analytical Specificity and Microbial Interference Study of a 30-Second Quantitative SARS-CoV-2 Detection Biosensor System

Author:

Chiang Chao-ChingORCID,Chiu Chan-Wen,Ren Fan,Tsai Cheng-Tse,Liao Yu-Te,Esquivel-Upshaw Josephine F.,Pearton Stephen J.ORCID

Abstract

The analytical specificity and microbial interference of a SARS-CoV-2 biosensor detection platform were elucidated in this work. A cost-effective and highly sensitive detection system for the virus has been developed with the capability of producing quantitative results comparable with polymerase chain reaction (PCR) within 30 s. This could meet the demand for a fast diagnosis solution needed for the ongoing global pandemic. Disposable strips were biofunctionalized and immobilized with monoclonal SARS-CoV-2 antibodies. A printed circuit board embedded with a metal–oxide–semiconductor field-effect transistor (MOSFET) was also designed. The strips were connected to the gate electrode of the MOSFET, which received a synchronous pulse along with the drain electrode. The resulting waveform from the drain was then converted to digital readouts corresponding to virus or spike protein concentrations. We investigated 26 common organisms which are likely presented in the respiratory system along with 5 pathogens from the same genetic family of the SARS-CoV-2 virus for having cross-reaction or microbial interference, either of which would hinder the efficacy of the system. None of these organisms decreased the virus detection effectiveness of the sensor system.

Funder

Ministry of Science and Technology, Taiwan

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3