Analytical Modelling and Simulation of Graphene Based Biosensor to Detect SARS-COV-2 from Aerosal Particles

Author:

Gifta G.ORCID,Jebalin I. V.Binola K.ORCID,Franklin S. Angen,Rani D. Gracia NirmalaORCID,Nirmal D.ORCID

Abstract

The health sector is focusing on the wellness of the society, is advancing in the phases of diagnosis and treatment. Biosensors based devices are used to diagnose a variety of human diseases. Recently, there was a sudden hike in the human mortality rate by chronic diseases caused by mutants of SARS-COV-2, on global scale. It is important to detect these kinds of diseases on an early stage to reduce the risk of spreading. For the analysis of Covid-19 influenza, tests such as Rapid Antigen Test (RAT), True NAT, CBNAAT and the commonly done RPT PCR were utilised. This proposal describes a non-invasive, quick and practical method for sensing the at-risk or infected persons with SARS-COV-2, aiming at controlling the epidemic. The proposed method employs a breath sensing device consisting of a Graphene Field Effect Transistor biosensor which can identify disease-specific biomarkers from exhaled sniff, hence allowing speedy and precise detection. This test aids screening of large populations as it is simple and quick and emerges as a promising candidate for SARS-COV-2 tests due to a high sensitivity. This work justifies the accurate diagnosis of Severe Acute Respiratory Syndrome COV 2 from aerosol particles by GFET Biosensor.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3