Improvement of the Charge Retention of a Non-Volatile Memory by a Bandgap-Engineered Charge Trap Layer

Author:

Cui Ziyang,Xin Dongxu,Kim Taeyong,Choi Jiwon,Cho Jaewoong,Yi JunsinORCID

Abstract

In recent years, research based on HfO2 as a charge trap memory has become increasingly popular. This material, with its advantages of moderate dielectric constant, good interface thermal stability and high charge trap density, is currently gaining in prominence in the next generation of nonvolatile memory devices. In this study, memory devices based on a-IGZO thin-film transistor (TFT) with HfO2/Al2O3/HfO2 charge trap layer (CTL) were fabricated using atomic layer deposition. The effect of the Al2O3 layer thickness (1, 2, and 3 nm) in the CTL on memory performance was studied. The results show that the device with a 2-nm Al2O3 layer in the CTL has a 2.47 V memory window for 12 V programming voltage. The use of the HfO2/Al2O3/HfO2 structure as a CTL lowered the concentration of electrons near the tunnel layer and the loss of trapped electrons. At room temperature, the memory window is expected to decrease by 0.61 V after 10 years. The large storage window (2.47 V) and good charge retention (75.6% in 10 years) of the device under low-voltage conditions are highly advantageous. The charge retention of the HfO2/Al2O3/HfO2 trap layer affords a feasible method for fabricating memory devices based on a-IGZO TFT.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3