Abstract
Facile synthesis demonstrated formation of CuO/rGO composite for enhanced optical and electrical characteristics for sensing and photonic devices. CuO nanoparticles synthesized using sol-gel method and various rGO percentages (10%–30%) were loaded to form composite via ultra-sonic assisted technique. Structural study using XRD and TEM confirms the formation of CuO polyhedral nanoparticles with monoclinic structure showing deviations in the unit cell parameters, crystallite size, axis strain. These deviations cause transformation of polyhedral particles into rod shaped nanocomposites with embedded CuO single crystals with changed rGO. X-ray photoelectron spectroscopy showed varied elemental composition of CuO/rGO nanocomposites having Cu2+ chemical state. Optical measurements exhibit modified direct (1.54 eV–1.51 eV) and indirect bandgap (1.38 eV–1.31 eV) having higher absorption in Visible to NIR region for photovoltaic applications. Raman spectroscopy and FTIR confirms the presence of Raman active bands and functional groups corresponding to Cu-O. Electrical measurements shows decreased resistance with increased incorporation of rGO. The higher presence of oxygen sites and low resistance facilitate easy electron transport alongwith an optimum bandgap (1.51 eV) and higher absorption in Visible to NIR region showed possible utility of the grown nanoparticles and composites in gas/photo sensing and optoelectronic applications.
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献