Abstract
Dielectric thin films are a fundamental part of solid-state devices providing the means for advanced structures and enhanced operation. Charged dielectrics are a particular kind in which embedded charge is used to create a static electric field which can add functionality and improve the performance of adjacent electronic materials. To date, the charge concentration has been limited to intrinsic defects present after dielectric synthesis, unstable corona charging, or complex implantation processes. While such charging mechanisms have been exploited in silicon surface passivation and energy harvesters, an alternative is presented here. Solid-state cations are migrated into SiO2 thin films using a gateless and implantation-free ion injecting method, which can provide greater long-term durability and enable fine charge tailoring. We demonstrate the migration kinetics and the stability of potassium, rubidium, and caesium cations inside of SiO2 thin films, showing that the ion concentration within the film can be tuned, leading to charge densities between 0.1–10 × 1012 q cm−2. A comprehensive model of ion injection and transport is presented along a detailed investigation of the kinetics of alkali cations. Integrating ionic charge into dielectrics to produce controlled electric fields can enable new architectures where field effect is exploited for improved electron devices.
Funder
Engineering and Physical Sciences Research Council
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献