The Electronic and Physical Structure Evaluation of MoS2(1−x)Te2x Alloy Fabricated with Co-Sputtering and Post-Deposition Annealing in Chalcogen Ambient

Author:

Hibino YusukeORCID,Yamazaki Kota,Hashimoto Yusuke,Otsuka Yosuke,Sawamoto Naomi,Machida Hideaki,Ishikawa Masato,Sudoh Hiroshi,Wakabayashi Hitoshi,Ogura Atsushi

Abstract

In recent years, the fabrication of transition metal dichalcogenide (TMD) alloys is drawing attention due to their controllable bandgap. Fabrication of MoS2(1−x)Te2x is expected to be difficult due to its thermal instability although it shows wide tunable bandgap range. In this study, MoS2(1−x)Te2x fabrication is carried out by sputtering and post-deposition thermal treatment in chalcogen ambient. Films without phase separation were successfully fabricated. It was revealed that the band structure changes according to the chalcogen ratio. The valence band maximum shifted non-linearly showing bowing effect, while the conduction band minimum remained almost unchanged. It was considered that such bowing behavior of valence band minimum is attributed to the electronegativity difference between S and Te. The invariant nature of the conduction band was attributed to the fact that there is no such competition of electronegativity for the metal side whose electron orbitals mainly contribute to the conduction band formation. The maximum shift in the valence band maximum was as large as 0.5 eV. It was also revealed that suppressing the chalcogen deficiency may prevent phase separation. The wide tunability in the band structure and the possibility of realizing the uniform alloy promises the materials high applicability to different electronic devices.

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3