Simultaneous Switching Noise Effects in Graphene-Based Power Distribution Networks

Author:

Kumar Vobulapuram RameshORCID

Abstract

The simultaneous switching noise (SSN) effects in graphene nanoribbon field effect transistor (GNRFET) based ternary circuits are presented in this study. The performance in terms of SSN induced peak noise and propagation delay on power and ground rails are investigated in multilayer graphene nanoribbon (MLGNR) bundled power interconnects using Hewlett simulation program with integrated circuit emphasis (HSPICE) simulator. Furthermore, these investigations are compared to the copper (Cu) and multiwalled carbon nanotubes (MWCNT) based power interconnects. From the results, it is noticed that the proposed MLGNR interconnects shows performance improvements up to 74.9% and 33.8% over the Cu and MWCNT interconnects. Moreover, the SSN peak noise and delay are investigated for different interconnect lengths from 200 μm to 500 μm. It is observed that the SSN noise on power and ground rail is reduced and propagation delay is increased as interconnect length is increased.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3